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Modified Transmission and Reflection Coefficients
of Nonuniform Transmission Lines
and Their Applications
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Abstract—By employing the ABCD transmission matrix of In this paper, we employ thd BC D transmission matrix
a transmission line, we formulate the reflection and transmis- of transmission lines to develop reflection and transmission
sion coefficients of a nonuniform line as polynomial ratios in coefficients of a nonuniform line. By treating an NTL as a

Z-transforms. Such formulations reveal explicit relationship be- ded te finit b f i fsi |
tween transmission and reflection coefficients of a nonuniform CaSCaded commensurate finite number of sections or signa

line. These formulations, in conjunction with a reconstruction lines, we express the scattering parameters of a nonuni-
method, lead to the realization of nonuniform lines from either form line as polynomial ratios inZ-transforms. We show

the reflection or transmission coefficients. Several examples arethat explicit relationship exists between the reflection and
presented to illustrate the applications of modified transmission yansmission coefficients. In particular, a given reflection coef-
and reflection coefficients in practical circuits. . . . . .
ficient of an NTL will lead to an explicit unique transmission
Index Terms—Filter, inverse scattering, transmission line. coefficient. However, a given transmission coefficient may
yield multiple corresponding reflection coefficients. These
formulations, in conjunction with a reconstruction scheme

o ] , [12], help the realization of an NTL from either a reflection
N ONUNIFORM transmission lines (NTL's) have beery yansmission coefficient. We present several examples to

I N studied by many authors for decades. Most of thosgirate the applications of such formulated coefficients in
investigations laid great stress on wave interaction with Hactical circuits.

NTL. They analyzed scattering characteristics of a known
structure of NTL's in both frequency and time domains [1]-[8].
Few papers [9]-[12] were concerned with inverse scattering
problems in which the structures of transmission lines are
obtained from given scattering parameters. As far as theThe ABCD transmission matrix of a uniform transmission
direct scattering is concerned, both computation efficiendipe in frequency domain can be written as [13]
and computation accuracy become major focuses. However, .
from the point-of-view of inverse scattering, the format of {A B} = [,Cos,ﬁl jZsin fl (1)
scattering parameters plays an important role in facilitating the ¢ D jYsin Bl cosfil
inverse problem. Therefore, we may formulate the scatterighere 3 is the phase constantZ is the characteristic
parameters of nonuniform line in various forms to fit specifignnedance )}y is the characteristic admittance, ahds the
considerations. physical length of transmission line.

In many practical applications, we need to build an NTL that The ABC'D matrix in frequency domain can be converted
meets certain scattering parameters in either frequency or tijRg the ABC'D matrix in Z domain by using = ¢/, where

domain. We typically use a lumpecC circuit to approximate , s the angular frequency. If the propagation delay time of
the prescribed characteristics. After obtaining the valuds®f \niform line is 7, i.e., 8l = wr, the ABCD matrix of the

elements, we then use the Richard's transformation [13] gfnal line can be cast into the form of
others to convert the equivaleb€ values into an appropriate

I. INTRODUCTION

Il. FORMULATIONS OF REFLECTION AND
TRANSMISSION COEFFICIENTS

structure of nonuniform lines. The motivation of this paper is 1 (z7+277) Z (z7 —277)

to study the scattering characteristics of an NTL and deduce {A B } - |2 2 7))

a scheme that constructs the physical structure of nonuniform ¢ D Y (z7 —277) 1 (z7+277)

lines from reflection or transmission coefficients. The method 2 2

shown here is different from the conventional scheme, whichSince an NTL can be treated as a cascaded finite number of
includes the concept of theC circuit. sections of signal lines, tha BC'D matrix of an NTL is then

represented by a sequential multiplication of the corresponding
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Fig. 1. A nonuniform line and its frequency-domain reflection and transmis-

sion coefficient.

where XN is the number of finite lines, and;, B;, C;, andD;
are the matrix elements that represent dtie(: < N) line.

where p;, and ¢, are real coefficients. Note thdt,(w) and
T.(w) are related taR.(z) andT.(z), respectively, as

z=eiw

R.(w) = R.(2)

(7a)

Assuming that the propagation delay of each divided sub-

section ist, from (2) and (3), we obtain thee BC D matrix
of an NTL in Z-transforms

N

2.

k=—N
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A= L (4a)

B 25T (4b)

kT

T ? (4c)

T (4d)

and

(7b)

z=edw .

If we divide the denominators and numerators of (6a) and
(6b) with a common factopy 2", we obtain the general
forms of reflection and transmission coefficients4drdomain

N
b 7—2n‘r
E n<

R.(z) = "= (8a)
1 + ZanZ—Qn‘r
n=1
—NT
T =— 2 (8)

= ]\T
14 § anZ—Qn‘r
n=1

whereay, Sk, vk, andn;, are real coefficients. The determinantvhereb,,, a,,, andb are real coefficients.
of the ABC'D matrix is one because the determinant of each Equation (8a) and (8b) represents modified reflection

ABCD matrix representing each subline is one.
If we setz = ¢/ in (4), we obtain theABCD trans-

and transmission coefficients of nonuniform signal lines in
Z-transforms. These equations have been widely used in

mission matrix of nonuniform line in frequency domain. Theligital signal processing (DSP) studies [14]. In fact, (8a) and

frequency-domain scattering parameters are relatet26'D

(8b) are the general forms of discrete-time system functions.

matrix elements in frequency domain with the following=or a given system specification in either frequency or time

relationships [13]:

_A+B/Zy—CZy—D

A+ B/Zy+CZy+D
2

A+ B/Zy+CZy+ D

R (w)

(5a)

Io(w)

(Sb)

where Z; is the reference characteristic impedanég,(w)
is the reflection coefficient, an.(w) is the transmission
coefficient, as shown in Fig. 1.

By substitutingA, B, C, and D in Z domain into (5a) and
(5b), we obtain

N
k=—N
RZ(Z) _ incren;\e;nt by 2 (6a)

k=—N

increment by 2

domain, we can easily find the coefficients, b,, and b,
shown in (8), by using DSP techniques. This reveals that
many application tools developed in DSP are applicable to the
study of NTL'’s. For example, in order to get an NTL filter that
has the desired transmission coefficiéhi z), we may use
digital filter-design techniquég14] or system-idenitification
techniques [15] to obtain the coefficients andb in 7.(z).
However, these are all DSP techniques and have been well
developed.

In many practical applications, we know only the trans-
mission coefficientZ,(z), but not the reflection coefficient
R.(z). It is a rather simple process to obtain the impedance
profile Z(z) of an NTL from the reflection coefficient by using
a reconstruction method [12], where is a space variable.
However, it is quite difficult to obtain the structure of a
nonuniform line from a given transmission coefficient. This, in
turn, indicates that it is useful to study the method of obtaining
the reflection coefficient from the transmission coefficient.

1T. P. Krauss, L. Shure, and J. N. LittiSignal Processing Toolbox User’s
Guide The Math Works Inc., Natick, MA, 1994.
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.
According to the conservation of energy, we have

RELATIONSHIP BETWEEN R.(z) AND 1.(z)

TP + [R.(2) ©)

Equation (9) indicates that a transmission coeffici&p{z)

2|t = 1.

may not yield a corresponding unique reflection coefficien
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If ¢ is a solution to|R(X)|?> = 0, we then have
N
lHa — dpe (1 = ;c)] — ¥ =0. (14a)
k=1

taking the complex conjugate on both sides of (14a), we
obtain

and vice versa. For example, in a single-section line, two

configurationss0 €2 — 100 £ — 50 £ and 50 € — 25 Q — 50 ©
have the same transmission coefficiefit$z), but these two
configurations produce different reflection coefficieRtg z).

A. To ObtainT,(z) from R_.(z)

For a dc condition, we have =0, =1, and7Z.(») = L.
As shown in (8b), this leads to the following condition:

N
b= <1 + Z an> .
n=1
Substitutingd into (8b), we obtairll..(z). Therefore, it is a
straightforward procedure to obtdliy(z) from a givenR,(z).

In particular, we show that a giveR, (z) will lead to a unique
T.(2).

(10)

B. To ObtainR.(z) from T.(z)
If we setX = 2?7, we then can cast (8b) in the form of

T.(z = X?") = T(X)
bX —(N/2)

N
1+ ZanX—"
n=1

bx—(N/2)

- (11)

[ -dx)

k=1

Note that bothz,, andb are real values. Howeved;, could
be a complex value and, is the pole of7’(X). By taking the
square of absolute valud’(z)|, we obtain

T(X)T*( ;) - .
[[¢ - dex—1)(1 - dpx)
k=1

b2

T =
(12)

Equation (12) indicates that, for each pdlein T(.X), there
exists two polesi;, and (d;) ! in |T(X)|?. Substituting (12)
into (9), we get

[R(X)P? =1 - |[1(X)?

N
[T - dex—H - dpx)| — 02
k:lN (13)
[[a-dxH1 - dix)
k=1

[ﬁu —di(e)™H(1 - dkc*)] - =0. (14b)

k=1

A close examination on (13), (14a), and (14b) reveals that,
if there is a complex numberthat makeg R(X)|? = 0, then
there exists another zer@*)~! that makes|R(X)|*> = 0.
Therefore, (13) can be cast in the form of

~
K[ - aX ™)1 - X)
|R(X))? = —=* (15)
[ - dx-1(1 - dx)
k=1

wherecy, d;, are complex numbers, andd is a real number.
To obtaine, from dy, we first expand the numerator of (13)
into a polynomial form withX as a variable. Obviously;. are
roots of that polynomial. We may use the built-in function in
MATLAB software tools to facilitate the procedure of finding
¢k from d;.t

Equation (8a) and (8b) reveals that bd@i.X) and T(X)
have the same poles. While no zero is foundlifiX), there
existsN zeros inR(X). In order to obtainR(X) from T'(X),
we need to compute all the zeros Bf X'). Comparing (8a)
with (15), we find that, for each zerg, in R(X), there exist
two zerosc,, and(c;)~! in |[R(X)|?. A similar situation holds
for the poles. If we want to obtai®(X) from |R(X)|?, we
choose one zero from each pair of zeros and one pole from
each pair of poles. Due to causality, the poles selected must be
within a unit circle. Therefore, to obtaiR(X) from |R(X)|?,
we have only one choice for each pair of poles. However, we
have two choices for the selection of each pair of zeros in
|R(X)|*. This shows that we may haw" choices for the
selection of all proper zeros. Note that the zeraXat= 1 in
|R(X)|? is a second-order zero.

It is pertinent to point out that, although we have many
choices to determin( X ), there is no guarantee that every
choice would eventually lead to a physical configuration
that is practically realizable. For example, a nonuniform line
consisting of extremely large or small values of characteristic
impedances cannot be practically implemented.

IV. APPLICATIONS

In this section, we present some examples to illustrate the
applications of transmission and reflection formulations in (8)
to practical circuits. In particular, we address the procedure
that converts a given frequency-domain transfer (or reflection)
coefficient into the form shown in (8).
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Fig. 3. (a) The physical layouts of two NTL's low-pass filters. (b) The
(b) measured responses of two low-pass filters shown in (a).

Fig. 2. (a) The transmission function of a postulated low filter havit33dB
point at 1.4 GHz. (b) The polgs) for bothT(X) and R(X), and the zeros ) o )
(o) for |[R(X)|2 in Z plane. Fig. 2(a) shows a transmission functidi(f) of a low-

pass filter having—3-dB point at 1.4 GHz. The frequency
of interest extends from dc to 2.5 GHz. We normalize the
frequency so that the uppermost frequency 2.5 GHz becomes
We assume that we need to construct a nonuniform line filtet4z and the-3-dB point is atl.4/2.5 = 0.56 Hz. We assume
from a given transmission function in frequency domain. Ag yse a five-section line, i.ely = 5, to implement such
shown in (8b), the transmission function is well represented By|ow-pass filter. Fig. 2(b) shows the locations of five poles
an all-pole function. This indicates that we essentially shou{flat represent the transmission function shown in Fig. 2(a).
design an all-pole filter that satisfies the transmission functiof. addition, Fig. 2(b) also shows the locations of zeros that
Here, we employ digital filter-design techniques which havgccur in the corresponding reflection coefficigdtX ). Note
been developed for many years in DSP studies. For a givgat all five zeros are located on the contour of a unit circle.
transmission function that shows the magnitude responsestag symbol “2” at each zero location represents a second-
a function of normalized frequency, we use a finite impulssrder zero. The reflection coefficient is then converted into
response (FIR) technique to obtain an all-zero filter f1%Ye  the impedance profile of an NTL by using the reconstruction
then convert the FIR filter into afvth-order all-pole filtet:  method [12]. We obtain two different nonuniform lines having
By employing these procedures, we obtdih poles of the impedance profile80 Q@ — 84 Q — 24 Q — 84 Q — 30 Q and
transmission coefficient. AIN poles are located within a unit83.5 © —29.8 © — 104 2 —29.8 2 —83.5 Q, respectively. The
circle in Z plane. Upon the substitution of poles into (11)physical length of each section is determined by the highest
we obtain the transmission functidi{ X'). We then obtain the frequency of interest. If the propagation delay of each section
corresponding reflection coefficieR(.X') by using the method is r, the interval between adjacent impulses in bdtht)
described in Section Ill. The conversion from transmissicend 7;(¢) is 27, where R,(¢) is the reflection coefficient and
function to bothT,(z) and R.(z) is facilitated by the aid of 73(¢) is the transmission coefficient in time domain. According
a MATLAB software tool* The physical structure that yieldto discrete Fourier transform theory, the repetitive period of
the prescribed reflection coefficie®.(z) or R, (w) can be both R, (w) andT,,(w) in frequency domain i4/27 and the
obtained by using the reconstruction technique in [12]. highest operating frequency of the filterligdr. Therefore, if

A. Filter Design
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Fig. 4. (a) An AR processor. (b) An eight-section nonuniform line that resembles the performance of an AR shown in (a).

the highest frequency of interestfig, the propagation delay of reflection coefficient can be regarded as an autoregressive
each section i$/4f;,. This, in turn, indicates that the physicalmoving average (ARMA) process, the transmission coefficient
length of each section i%;, /4, where,, is the wavelength of can be treated as an autoregressive (AR) process [15]. A DSP
highest frequency signal in the respective section. Note thggnerally can be implemented by using a microprocessor or
because of the variation of effective dielectric constants, tBpecial integrated circuit (IC). However, when we implement
physical length of each section may have a different value.a DSP with a microprocessor, we cannot obtain a speed
The low-pass filters are built on Duroid substrate hathat exceeds several hundred megahertz. However, if we
ing thickness of 31 mil and relative dielectric constant QanIement an IIR circuit by using an NTL, its speed is able
2.5, which are shown in Fig. 3(a) and (b). The width angh exceed gigahertz fairly easily.
length of each uniform line are calculated by using mi- Fig. 4(a) shows an AR process whose performance resem-
crostrip formulations [13]. We use an HP8510C networkles the transmission coefficient in (8b). Although we may
analyzer to measure the transmission coefficients of these tyjtrarily select the values af(i = 1,2,---,8), itis pertinent
nonuniform microstrip lines. Fig. 3(b) shows the measuremegf noint out that the choices of; must satisfy |T.(» =

results of two low-pass filters. For convenience, we alscgw)|<1_ For the present consideration, we sgt= —0.3
show the original filter specification, which is shown ina2 — 03, as = 0.056, ay = 0.0897, a5 = —0.0054

solid line. The slight discrepancy between the measurem%rgt — —0.0058, @z = —0.0012, and as = —0.0015. The

results and original specification is due to the loss faCt95Iue of b is obtained via (10). We show here that an NTL

and big impedance discontinuity occurring at the junction _%fan resemble the performance of an AR processor shown in

two uniform lines. The effects of both loss factor and b|g:ig 4(a)
impedance discontinuity on an NTL are not taken into accountB'y usi.ng the same procedures addressed in previous sec-
for the present consideration.

Although the physical structures of low-pass filters are sirrt1|—0 ns, we obtain an eight-section NTL having impedance

ilar to those of conventional low-pass filters, it is pertinent t rofile 57.98 € — 102.70 © - 156.32 & — 66.27 & —
point out that the method presented here is quite different fror%’o2 2 - 77.46 © = 46,62 Q — 52.11 Q. Note that this

conventional equivalentC circuit approach [13]. In particular, Impedance profile is just one selection among many choices.

two structures having the same measurement results basic W op.eratlon speed of .the AR Process 1S dgtermlned by the
elay time of each section of transmission line. We assume

agree with our prediction. Furthermore, each uniform line i h . qi ; h ianal I
either filter configuration has the same propagation delay. T}Iiri?tt e operation speed is 4 GHz, 1.., the output signal cou

property is not found in convention&lC approach filters. change state every 0.25 ns. The delay-time of each section
must be 0.125 ns because the output signal will be changed

. o o in the interval of signal round-trip time. This nonuniform line

B. High-Speed Infinite Impulse Response (lIR) Circuit is built on a Duroid substrate having 31-mil thickness and
From the viewpoint of DSP, (8a) and (8b) indicate thaelative dielectric constant 2.5, as shown in Fig. 4(b). When
an NTL can also be treated as an IIR circuit. While thee apply an input signal in Fig. 5(a) to the eight-section lines,
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Fig. 5. (a) Input signal to the AR shown in Fig. 4(b). (b) Comparison ¢
AR output to ideal AR output.

we obtain the output of the nonuniform line, which is show
in Fig. 5(b). Notice that the time-domain response in Fig. 5(

&

is obtained by taking the inverse Fourier transform of itt%sting and research
frequency-domain result, which extends from 50 MHz to 2§ectromagnetic compatibility, microwave circuit design, and transmission-line
GHz. For convenience, we also show in Fig. 5(b) the output wbdeling and applications.

an ideal AR processor. Fig. 5(b) shows that slight discrepancy

exists between measurement result and ideal value.
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V. CONCLUSION

We have derived reflection and transmission coefficients
NTL's in Z-transform forms. In particular, we show that the
transmission parameter can be obtained from the reflecti
parameter and vice versa. The AR format of scattering g
rameters of an NTL reveals physical insights and deduc
applications to practical circuits.




