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Modified Transmission and Reflection Coefficients
of Nonuniform Transmission Lines

and Their Applications
Te-Wen Pan and Ching-Wen Hsue,Senior Member, IEEE

Abstract—By employing the ABCD transmission matrix of
a transmission line, we formulate the reflection and transmis-
sion coefficients of a nonuniform line as polynomial ratios in
Z-transforms. Such formulations reveal explicit relationship be-
tween transmission and reflection coefficients of a nonuniform
line. These formulations, in conjunction with a reconstruction
method, lead to the realization of nonuniform lines from either
the reflection or transmission coefficients. Several examples are
presented to illustrate the applications of modified transmission
and reflection coefficients in practical circuits.

Index Terms—Filter, inverse scattering, transmission line.

I. INTRODUCTION

NONUNIFORM transmission lines (NTL’s) have been
studied by many authors for decades. Most of those

investigations laid great stress on wave interaction with an
NTL. They analyzed scattering characteristics of a known
structure of NTL’s in both frequency and time domains [1]-[8].
Few papers [9]-[12] were concerned with inverse scattering
problems in which the structures of transmission lines are
obtained from given scattering parameters. As far as the
direct scattering is concerned, both computation efficiency
and computation accuracy become major focuses. However,
from the point-of-view of inverse scattering, the format of
scattering parameters plays an important role in facilitating the
inverse problem. Therefore, we may formulate the scattering
parameters of nonuniform line in various forms to fit specific
considerations.

In many practical applications, we need to build an NTL that
meets certain scattering parameters in either frequency or time
domain. We typically use a lumpedLC circuit to approximate
the prescribed characteristics. After obtaining the values ofLC
elements, we then use the Richard’s transformation [13] or
others to convert the equivalentLC values into an appropriate
structure of nonuniform lines. The motivation of this paper is
to study the scattering characteristics of an NTL and deduce
a scheme that constructs the physical structure of nonuniform
lines from reflection or transmission coefficients. The method
shown here is different from the conventional scheme, which
includes the concept of theLC circuit.
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In this paper, we employ the transmission matrix
of transmission lines to develop reflection and transmission
coefficients of a nonuniform line. By treating an NTL as a
cascaded commensurate finite number of sections of signal
lines, we express the scattering parameters of a nonuni-
form line as polynomial ratios in -transforms. We show
that explicit relationship exists between the reflection and
transmission coefficients. In particular, a given reflection coef-
ficient of an NTL will lead to an explicit unique transmission
coefficient. However, a given transmission coefficient may
yield multiple corresponding reflection coefficients. These
formulations, in conjunction with a reconstruction scheme
[12], help the realization of an NTL from either a reflection
or transmission coefficient. We present several examples to
illustrate the applications of such formulated coefficients in
practical circuits.

II. FORMULATIONS OF REFLECTION AND

TRANSMISSION COEFFICIENTS

The transmission matrix of a uniform transmission
line in frequency domain can be written as [13]

(1)

where is the phase constant, is the characteristic
impedance, is the characteristic admittance, andis the
physical length of transmission line.

The matrix in frequency domain can be converted
into the matrix in domain by using , where

is the angular frequency. If the propagation delay time of
uniform line is , i.e., , the matrix of the
signal line can be cast into the form of

(2)

Since an NTL can be treated as a cascaded finite number of
sections of signal lines, the matrix of an NTL is then
represented by a sequential multiplication of the corresponding

matrices of uniform transmission lines. We then have

(3)
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Fig. 1. A nonuniform line and its frequency-domain reflection and transmis-
sion coefficient.

where is the number of finite lines, and , , , and
are the matrix elements that represent theth line.

Assuming that the propagation delay of each divided sub-
section is , from (2) and (3), we obtain the matrix
of an NTL in -transforms

(4a)

(4b)

(4c)

(4d)

where , , , and are real coefficients. The determinant
of the matrix is one because the determinant of each

matrix representing each subline is one.
If we set in (4), we obtain the trans-

mission matrix of nonuniform line in frequency domain. The
frequency-domain scattering parameters are related to
matrix elements in frequency domain with the following
relationships [13]:

(5a)

(5b)

where is the reference characteristic impedance,
is the reflection coefficient, and is the transmission
coefficient, as shown in Fig. 1.

By substituting , , , and in domain into (5a) and
(5b), we obtain

(6a)

and

(6b)

where and are real coefficients. Note that and
are related to and , respectively, as

(7a)

and

(7b)

If we divide the denominators and numerators of (6a) and
(6b) with a common factor , we obtain the general
forms of reflection and transmission coefficients indomain

(8a)

(8b)

where , , and are real coefficients.
Equation (8a) and (8b) represents modified reflection

and transmission coefficients of nonuniform signal lines in
-transforms. These equations have been widely used in

digital signal processing (DSP) studies [14]. In fact, (8a) and
(8b) are the general forms of discrete-time system functions.
For a given system specification in either frequency or time
domain, we can easily find the coefficients, , and ,
shown in (8), by using DSP techniques. This reveals that
many application tools developed in DSP are applicable to the
study of NTL’s. For example, in order to get an NTL filter that
has the desired transmission coefficient , we may use
digital filter-design techniques1 [14] or system-idenitification
techniques [15] to obtain the coefficients and in .
However, these are all DSP techniques and have been well
developed.

In many practical applications, we know only the trans-
mission coefficient , but not the reflection coefficient

. It is a rather simple process to obtain the impedance
profile of an NTL from the reflection coefficient by using
a reconstruction method [12], where is a space variable.
However, it is quite difficult to obtain the structure of a
nonuniform line from a given transmission coefficient. This, in
turn, indicates that it is useful to study the method of obtaining
the reflection coefficient from the transmission coefficient.

1T. P. Krauss, L. Shure, and J. N. Little,Signal Processing Toolbox User’s
Guide, The Math Works Inc., Natick, MA, 1994.
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III. RELATIONSHIP BETWEEN AND

According to the conservation of energy, we have

(9)

Equation (9) indicates that a transmission coefficient
may not yield a corresponding unique reflection coefficient
and vice versa. For example, in a single-section line, two
configurations and
have the same transmission coefficients , but these two
configurations produce different reflection coefficients .

A. To Obtain from

For a dc condition, we have , , and .
As shown in (8b), this leads to the following condition:

(10)

Substituting into (8b), we obtain . Therefore, it is a
straightforward procedure to obtain from a given .
In particular, we show that a given will lead to a unique

.

B. To Obtain from

If we set , we then can cast (8b) in the form of

(11)

Note that both and are real values. However, could
be a complex value and is the pole of . By taking the
square of absolute value , we obtain

(12)

Equation (12) indicates that, for each polein , there
exists two poles and in . Substituting (12)
into (9), we get

(13)

If is a solution to , we then have

(14a)

By taking the complex conjugate on both sides of (14a), we
obtain

(14b)

A close examination on (13), (14a), and (14b) reveals that,
if there is a complex number that makes , then
there exists another zero that makes .
Therefore, (13) can be cast in the form of

(15)

where are complex numbers, and is a real number.
To obtain from , we first expand the numerator of (13)
into a polynomial form with as a variable. Obviously, are
roots of that polynomial. We may use the built-in function in
MATLAB software tools to facilitate the procedure of finding

from .1

Equation (8a) and (8b) reveals that both and
have the same poles. While no zero is found in , there
exists zeros in . In order to obtain from ,
we need to compute all the zeros of . Comparing (8a)
with (15), we find that, for each zero in , there exist
two zeros and in . A similar situation holds
for the poles. If we want to obtain from , we
choose one zero from each pair of zeros and one pole from
each pair of poles. Due to causality, the poles selected must be
within a unit circle. Therefore, to obtain from ,
we have only one choice for each pair of poles. However, we
have two choices for the selection of each pair of zeros in

. This shows that we may have choices for the
selection of all proper zeros. Note that the zero at in

is a second-order zero.
It is pertinent to point out that, although we have many

choices to determine , there is no guarantee that every
choice would eventually lead to a physical configuration
that is practically realizable. For example, a nonuniform line
consisting of extremely large or small values of characteristic
impedances cannot be practically implemented.

IV. A PPLICATIONS

In this section, we present some examples to illustrate the
applications of transmission and reflection formulations in (8)
to practical circuits. In particular, we address the procedure
that converts a given frequency-domain transfer (or reflection)
coefficient into the form shown in (8).
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(a)

(b)

Fig. 2. (a) The transmission function of a postulated low filter having�3-dB
point at 1.4 GHz. (b) The poles(x) for bothT (X) andR(X), and the zeros
(o) for jR(X)j2 in Z plane.

A. Filter Design

We assume that we need to construct a nonuniform line filter
from a given transmission function in frequency domain. As
shown in (8b), the transmission function is well represented by
an all-pole function. This indicates that we essentially should
design an all-pole filter that satisfies the transmission function.
Here, we employ digital filter-design techniques which have
been developed for many years in DSP studies. For a given
transmission function that shows the magnitude responses as
a function of normalized frequency, we use a finite impulse
response (FIR) technique to obtain an all-zero filter [14].1 We
then convert the FIR filter into an th-order all-pole filter.1

By employing these procedures, we obtain poles of the
transmission coefficient. All poles are located within a unit
circle in plane. Upon the substitution of poles into (11),
we obtain the transmission function . We then obtain the
corresponding reflection coefficient by using the method
described in Section III. The conversion from transmission
function to both and is facilitated by the aid of
a MATLAB software tool.1 The physical structure that yield
the prescribed reflection coefficient or can be
obtained by using the reconstruction technique in [12].

(a)

(b)

(c)

Fig. 3. (a) The physical layouts of two NTL’s low-pass filters. (b) The
measured responses of two low-pass filters shown in (a).

Fig. 2(a) shows a transmission function of a low-
pass filter having 3-dB point at 1.4 GHz. The frequency
of interest extends from dc to 2.5 GHz. We normalize the
frequency so that the uppermost frequency 2.5 GHz becomes
1 Hz and the 3-dB point is at Hz. We assume
to use a five-section line, i.e., , to implement such
a low-pass filter. Fig. 2(b) shows the locations of five poles
that represent the transmission function shown in Fig. 2(a).
In addition, Fig. 2(b) also shows the locations of zeros that
occur in the corresponding reflection coefficient . Note
that all five zeros are located on the contour of a unit circle.
The symbol “2” at each zero location represents a second-
order zero. The reflection coefficient is then converted into
the impedance profile of an NTL by using the reconstruction
method [12]. We obtain two different nonuniform lines having
impedance profiles and

, respectively. The
physical length of each section is determined by the highest
frequency of interest. If the propagation delay of each section
is , the interval between adjacent impulses in both
and is , where is the reflection coefficient and

is the transmission coefficient in time domain. According
to discrete Fourier transform theory, the repetitive period of
both and in frequency domain is and the
highest operating frequency of the filter is . Therefore, if
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(a)

(b)

Fig. 4. (a) An AR processor. (b) An eight-section nonuniform line that resembles the performance of an AR shown in (a).

the highest frequency of interest is, the propagation delay of
each section is . This, in turn, indicates that the physical
length of each section is , where is the wavelength of
highest frequency signal in the respective section. Note that,
because of the variation of effective dielectric constants, the
physical length of each section may have a different value.

The low-pass filters are built on Duroid substrate hav-
ing thickness of 31 mil and relative dielectric constant of
2.5, which are shown in Fig. 3(a) and (b). The width and
length of each uniform line are calculated by using mi-
crostrip formulations [13]. We use an HP8510C network
analyzer to measure the transmission coefficients of these two
nonuniform microstrip lines. Fig. 3(b) shows the measurement
results of two low-pass filters. For convenience, we also
show the original filter specification, which is shown in
solid line. The slight discrepancy between the measurement
results and original specification is due to the loss factor
and big impedance discontinuity occurring at the junction of
two uniform lines. The effects of both loss factor and big
impedance discontinuity on an NTL are not taken into account
for the present consideration.

Although the physical structures of low-pass filters are sim-
ilar to those of conventional low-pass filters, it is pertinent to
point out that the method presented here is quite different from
conventional equivalentLC circuit approach [13]. In particular,
two structures having the same measurement results basically
agree with our prediction. Furthermore, each uniform line in
either filter configuration has the same propagation delay. This
property is not found in conventionalLC approach filters.

B. High-Speed Infinite Impulse Response (IIR) Circuit

From the viewpoint of DSP, (8a) and (8b) indicate that
an NTL can also be treated as an IIR circuit. While the

reflection coefficient can be regarded as an autoregressive
moving average (ARMA) process, the transmission coefficient
can be treated as an autoregressive (AR) process [15]. A DSP
generally can be implemented by using a microprocessor or
special integrated circuit (IC). However, when we implement
a DSP with a microprocessor, we cannot obtain a speed
that exceeds several hundred megahertz. However, if we
implement an IIR circuit by using an NTL, its speed is able
to exceed gigahertz fairly easily.

Fig. 4(a) shows an AR process whose performance resem-
bles the transmission coefficient in (8b). Although we may
arbitrarily select the values of , it is pertinent
to point out that the choices of must satisfy

. For the present consideration, we set ,
, , , ,

, , and . The
value of is obtained via (10). We show here that an NTL
can resemble the performance of an AR processor shown in
Fig. 4(a).

By using the same procedures addressed in previous sec-
tions, we obtain an eight-section NTL having impedance
profile

. Note that this
impedance profile is just one selection among many choices.
The operation speed of the AR process is determined by the
delay time of each section of transmission line. We assume
that the operation speed is 4 GHz, i.e., the output signal could
change state every 0.25 ns. The delay time of each section
must be 0.125 ns because the output signal will be changed
in the interval of signal round-trip time. This nonuniform line
is built on a Duroid substrate having 31-mil thickness and
relative dielectric constant 2.5, as shown in Fig. 4(b). When
we apply an input signal in Fig. 5(a) to the eight-section lines,
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(a)

(b)

Fig. 5. (a) Input signal to the AR shown in Fig. 4(b). (b) Comparison of
AR output to ideal AR output.

we obtain the output of the nonuniform line, which is shown
in Fig. 5(b). Notice that the time-domain response in Fig. 5(b)
is obtained by taking the inverse Fourier transform of its
frequency-domain result, which extends from 50 MHz to 20
GHz. For convenience, we also show in Fig. 5(b) the output of
an ideal AR processor. Fig. 5(b) shows that slight discrepancy
exists between measurement result and ideal value.

V. CONCLUSION

We have derived reflection and transmission coefficients of
NTL’s in -transform forms. In particular, we show that the
transmission parameter can be obtained from the reflection
parameter and vice versa. The AR format of scattering pa-
rameters of an NTL reveals physical insights and deduces
applications to practical circuits.

REFERENCES

[1] F. Y. Chang, “Waveform relaxation analysis of nonuniform lossy
transmission lines characterized with frequency-dependent parameters,”
IEEE Trans. Circuits Syst., vol. 38, pp. 1484–1500, Dec. 1991.

[2] Q. Gu and J. A. Kong, “Transient analysis of single and coupled lines
with capacitively loaded junctions,”IEEE Trans. Microwave Theory
Tech., vol. MTT-34, pp. 952–964, Sept. 1986.

[3] K. N. S. Rao, V. Mahadevan, and S. P. Kosta, “Analysis of straight
tapered microstrip lines—ASTMIC,”IEEE Trans. Microwave Theory
Tech., vol. MTT-25, pp. 164–164, Feb. 1977.

[4] O. P. Rustogi, “Linearly tapered transmission line and its applications
in microwave,”IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp.
166–168, Mar. 1969.

[5] J. E. Schutt-Aine, “Transient analysis of nonuniform transmission lines,”
IEEE Trans. Circuits Syst. I, vol. 39, pp. 378–385, May 1992.

[6] K. Lu, “An efficient method for analysis of arbitrary nonuniform
transmission lines,”IEEE Trans. Microwave Theory Tech., vol. 45, pp.
9–14, Jan. 1997.

[7] J. P. Mahon and R. S. Elliott, “Tapered transmission lines with a
controlled ripple response,”IEEE Trans. Microwave Theory Tech., vol.
38, pp. 1415–1420, Oct. 1990.

[8] R. W. Klopfenstein, “A transmission line taper of improved design,”
Proc. IRE, vol. 44, pp. 31–35, Jan. 1956.

[9] S. C. Burkhart and R. B. Wilcox, “Arbitrary pulse synthesis via
nonuniform transmission lines,”IEEE Trans. Microwave Theory Tech.,
vol. 38, pp. 1514–1518, Oct. 1990.

[10] L. A. Hayden and V. K. Tripathi, “Characterization and modeling of
multiple line interconnections from time-domain measurements,”IEEE
Trans. Microwave Theory Tech., vol. 42, pp. 1737–1743, Sept. 1994.

[11] S. D. Corey and A. T. Yang, “Interconnect characterization using time
domain reflectometry,”IEEE Trans. Microwave Theory Tech., vol. 43,
pp. 2151–2156, Sept. 1995.

[12] C.-W. Hsue and T.-W. Pan, “Reconstruction of nonuniform transmission
lines from time-domain reflectometry,”IEEE Trans. Microwave Theory
Tech., vol. 45, pp. 32–38, Jan. 1997.

[13] D. M. Pozar,Microwave Engineering. Reading, MA: Addison-Wesley,
1990.

[14] A. V. Oppenheim and R.-W. Schafer,Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[15] A. Papoulis,Probability, Random Variable and Stochastic Processes, 3rd
ed. New York: McGraw-Hill 1991.

Te-Wen Pan was born on August 28, 1969, in
Taipei, Taiwan, R.O.C. He received the B.S. and
the M.S. degrees in electronic engineering from
the National Taiwan University of Science and
Technology (formerly, the National Taiwan Institute
of Technology), Taiwan, R.O.C., in 1994 and 1996,
respectively, and is currently working toward the
Ph.D. degree.

From July 1996 to February 1997, he was with the
Electronic Testing Center, Taoyuan, Taiwan, R.O.C.,
where he worked on electromagnetic compatibility

testing and research. His current research interests are in the areas of
electromagnetic compatibility, microwave circuit design, and transmission-line
modeling and applications.

Ching-Wen Hsue (SM’91) was born in Tainan,
Taiwan, R.O.C.. He received the B.S. and M.S. de-
grees in electrophysics and electronic from National
Chiao-Tung University, Hsin-Chu, Taiwan, R.O.C.,
in 1973 and 1975, respectively, and the Ph.D. degree
from Polytechnic University (formerly, the Poly-
technic Institute of Brooklyn), Brooklyn, NY, in
1985.

From 1975 to 1980, he was a Research Engineer
at the Telecommunication Laboratories, Ministry
of Communication, Taiwan, R.O.C. From 1985 to

1993, he was with Bell Laboratories, Princeton, NJ, as a Member of Technical
Staff. In 1993, he joined the Department of Electronic Engineering, National
Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C., as
a Professor, and since August 1997, he has served as the department
Chairman. His current interests are in pulse-signal propagation in lossless
and lossy transmission media, wave interactions between nonlinear elements
and transmission lines, photonics, high-power amplifiers and electromagnetic
inverse scattering.


